Hydrogen in energy decarbonisation scenarios; focus on industry

European Energy Network: Decarbonising Industry Webinar

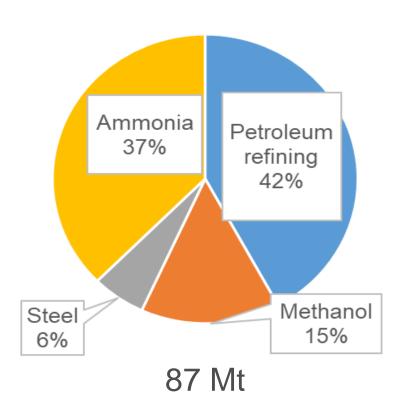
9 March 2023

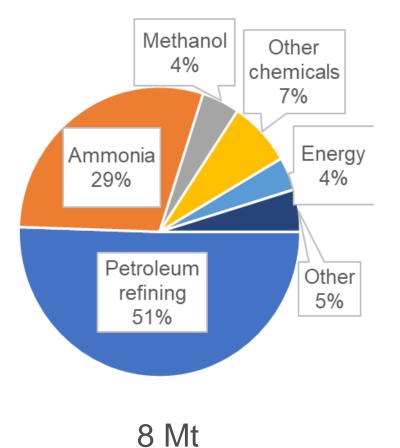
José Moya Energy Transition Insights for Policy Joint Research Centre

European

JRC reports in support of a decarbonised industry

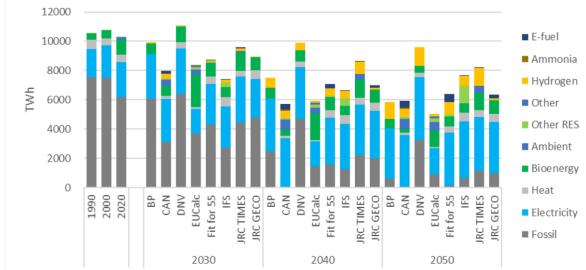
Other JRC reports on energy scenarios: <u>JRC118952</u>, <u>JRC127122</u>

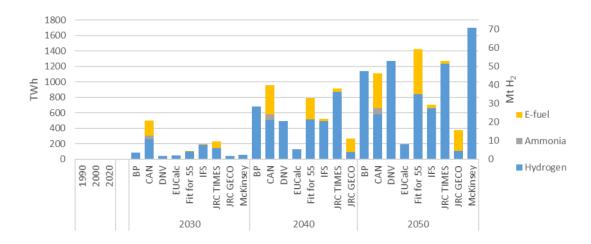



Increasing presence of hydrogen

- In last few years hydrogen became part of (almost) every energy future
- All new major energy scenario studies see a role for hydrogen
- The EU hydrogen strategy was published in 2020 COM(2020)331
- 10 of G20 members have hydrogen strategy. Another 8 in progress
- **19 EU member states** have a hydrogen strategy
- (At least) **19** dedicated **hydrogen studies** were published last year
- Accelerating hydrogen in **REPowerEU** COM(2022)230
- Over 80 million web pages on hydrogen were created/updated last year

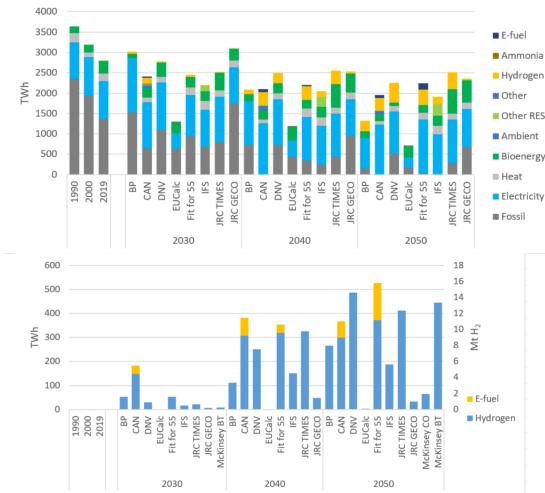
2020 hydrogen demand, global (left) and EU (right)



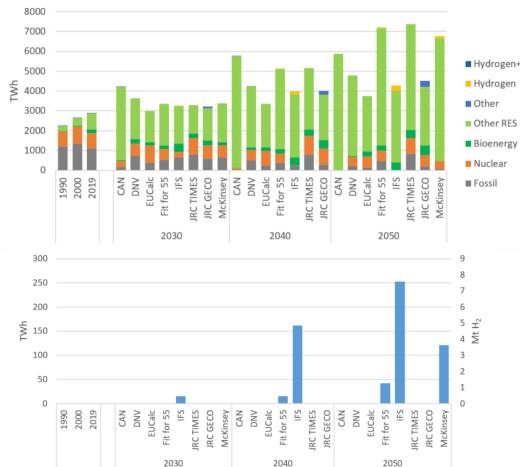


Source JRC (JRC131299)

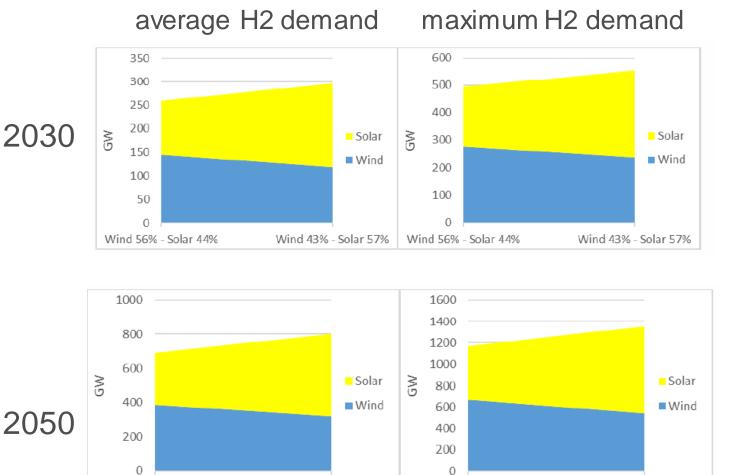
EU final energy demand



- There is a clear agreement on a decrease in final energy demand in the future, not in the intensity of the decrease.
- In 2030 hydrogen share ranges from 0.3% to 7.0% of final energy demand.
- In 2050 hydrogen share ranges from 1.5% to 19.8% in final energy demand


EU hydrogen demand in industry

- Scenarios foresee an decrease in the energy demand in industry
- In 2030 hydrogen share ranges from 0% to 2% of final energy demand
- In 2050 hydrogen share ranges from 1% to 34% in final energy demand


Hydrogen in EU power generation

- All scenarios foresee an increase in power generation
- In 2050 90+% of power is low carbon, dominated by wind and solar
- Hydrogen power generation is available only in a limited number of scenarios
- While in absolute terms hydrogen usage for power generation is insignificant, it is essential for renewable integration

Electrolysers capacity required in the EU

- By 2030, using 100% green hydrogen, the electrolyser capacity required to supply 500TWh of hydrogen amounts to around 260-300 GW.
- By 2030, to meet a maximum hydrogen demand of 957 TWh will require between 500-550GW of electrolyser capacity.
- By 2050, electrolyser capacities between of 700-800 GW and 1200-1400 GW will be required to satisfy an average and maximum hydrogen demand of 1600TWh and 2700TWh,.

Wind 40% - Solar 60%

Wind 57% - Solar 43%

Wind 40% - Solar 60%

Wind 57% - Solar 43%

Momentum shift in the steel industry towards decarbonisation

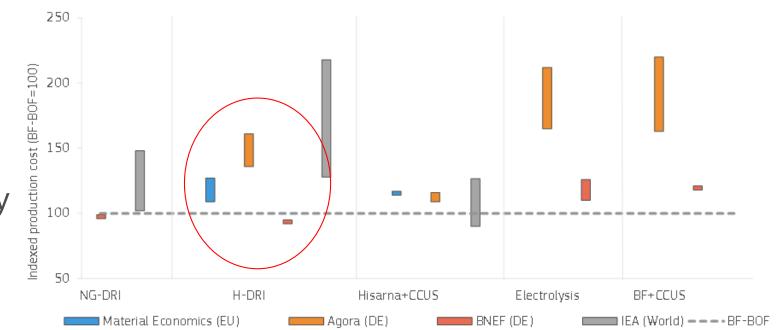
 All 5 top global steelmakers have net-zero targets:

		2019		2050
Company	HQ location	producti	ion (Mt)	target
ArcelorMittal	EU		97	\checkmark
Baowu	China		95	\checkmark
Nippon Steel	Japan		52	\checkmark
HBIS Group	China		47	\checkmark
POSCO	South Korea		43	\checkmark

Source: JRC

 But none of the next 15 largest steelmakers (mostly from China) In the EU, there is a clear trend towards hydrogen-based steelmaking:

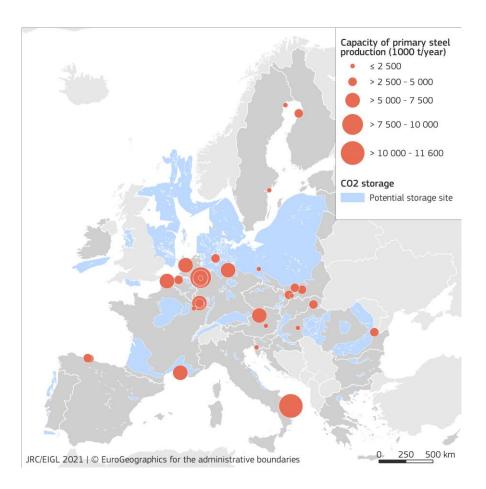
		Current primary steel	
Company	Country	capacity in EU (Mt)	Announced strategy
ArcelorMittal	Several		2030: Hydrogen + CCUS
AICEIOIMIILLAI		4	2050: Hydrogen DRI
Thyssenkrupp	Germany		2030: CCUS + DRI
		1	2 2050: Hydrogen DRI
Voestalpine	Austria		B Hydrogen DRI
Tata Steel	Netherlands		B Hydrogen DRI
	Sweden		
SSAB	Finland	-	7 Hydrogen DRI
Salzgitter	Germany		5 Hydrogen DRI


Source: JRC

Future costs of low-CO₂ technologies for steel production

- Wide range
- Main variable: future cost of green H₂ and electricity (up to 45% of total cost)
- CapEx substantial: EUR 70-100 bn needed by 2050

Comparison of future levelised cost of low-CO₂ primary steel production technologies, indexed to current BF-BOF cost, from external sources



Source: JRC based on Agora Energiewende and Wuppertal Institute, 2021, BNEF, 2021; IEA, 2020; Material Economics, 2019

CCUS for CO₂-free primary steel as alternative for H-DRI

- Possible to retrofit, but with extensive process modifications
- >75% CO₂ reduction difficult
- CCU projects valorise CO₂ for synfuels and chemicals: full lifecycle needs to be considered!
- 6 projects in EU

Source: JRC/Energy and Industry Geography Lab

Main messages

- Despite current hydrogen consumption is like feedstock, most of the expected consumption will take place as part of the final energy demand (in industry also for process requiring high-temperature heat).
- The challenges to accomplish the transformation: practically nonexisting transport infrastructure and the required electrolysers capacity: on average maximum demand
 By 2030 260-300 GW 500-550 GW
 By 2050 700-800 GW 1200-1400 GW
- Decarbonising the production of current hydrogen consumption as feedstock in industry can act like the spearhead of the new generation of electrolysers capacities.

Main messages (cont)

- European Climate Law: Climate neutrality by 2050
- Industrial assets have long lifetimes (20+ years for steel 40+ for cement). Reinvesting into current processes risks locking in emissions until 2050 or creates future stranded assets
- Current plants need to be replaced with low-CO₂ technologies: requires big investment decisions to be made this decade.
- Hydrogen is most promising decarbonisation option for the steel industry, though CCUS cannot be disregarded.

Keep in touch

EU Science Hub

joint-research-centre.ec.europa.eu

- @EU_ScienceHub
- **f** EU Science Hub Joint Research Centre
- in) EU Science, Research and Innovation
- **D** EU Science Hub
- @eu_science

Thank you

© European Union 2023

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Main messages (cont)

